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Abstract

This is an old issuein computational fluid dynamics (CFD). What is the so-called

contravariant velocity or cortravariant velocity component? In the article, we review the

basicsof tensor analysisand give the contravariant velocity componenta rigorous expla-

nation. For a given coordin._tesystem, there exist two uniquely determined sets of base

vector systems- oneis the c_)variantand another is the contravariant basevector system.

The two base vector systens are reciprocal. The so-called contravariant velocity com-

ponent is really the contraworiantcomponentof a velocity vector for a time-independent

coordinatesystem,or the co_travariant componentof a relative velocity betweenfluid and

coordinates, for a time-depeadentcoordinate system. The contravariant velocity compo-

nentsarenot physicalquantities of the velocity vector. Their magnitudes, dimensions, and

associated directions are controlled by their corresponding covariant base vectors. Several

2-D linear examples and 2-E mass-conservation equation are used to illustrate the details

of expressing a vector with r,_spect to the covariant and contravariant base vector systems,

respectively.

I. Introduction

Written in generalized _mrvilinear coordinates _ = _(x, y), r_= rl(x, y) the 2-D inviscid

Navier-Stokes equations are. in a strong conservative form,

_)TQ + tg_F + tgnG = 0 (1)

Q = j-1 flu .if, = j-1 DuU + _xP G = J-_ puV + r_p

pv ' pvU + _yp ] ' pvV + r_vp
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where, p, u, v,p, e are convei tional physical properties, Y is transformation Ja, cobian and

U = (._u + _vv, V = _zu + %v
(2)

Vinokur(Ref. 1) introduced t he strong conservative form of Navier-Stokes equations to CFD

in 1974, and pointed out that (U, V) were the contravariant components of velocity vector.

Compared to the Navier-Stokes equations written in Cartesian coordinates (x, y), except

for the additional inclusion ,,f the transformation Jacobian J, (U, V) are the replacements

of velocities (u, v), and henc_ Steger (Ref. 2) in 1977 treated (U, V) as velocities and stated

that (U, V) were

" the so-called cortravariant velocities along the _ and 7? coordinates."

Since then, the term "contra_ariant velocities" or "contravariant velocity components" was

widely used in computational fluid mechanics and heat transfers in general without further

statement or explanation, (for instances, Refs. 3 - 5). The term "contravariant velocity

components" could be interr reted either as, like Vinokur (Refs. 1), "contravariant (velocity)

components", (i.e. contrava:iant components of velocity) which is strictly a mathematical

definition or as, like Steger iRef. 2), "the components of contravariant velocity" in which

the "contravariant velocity" can be loosely defined• In this article "contravariant velocity

components" is treated as tte latter and is interchangeable with "contravariant velocities"•

Following a similar d_finition of Ref. 2, while applied for body surface, Ref. 6 ex-

plained that

" - - - the contravariant velocities are the decomposition of velocity vector into

components along the _ coordinate line, U, and along the 77 coordinate line, V."

There is some ambiguity in the above explanation. It had never explained the means and

procedures of :'decompositicm" of velocity vector into components. It only described the

directions the components a _sociated but had never prescribed its corresponding base vec-

• ,_, ftor system. One would mtm :,n ely interpret (U, V) as the decomposed physical components

of velocity vector along the :lirections of coordinate lines (_, 7?). In contrast to Refs. 2 and

6_ Ref. 7 stated (for 3-D case) that



':The contravariant ve ocity components U, V, W are in directions normal to constant

_, U, _ surfaces, respec_,ively."

The above statement contradicts the statements from Refs. 2 and 6 about the directions

of contravariant velocity components associated with a coordinate system. As we shall

see, neither of the above t,vo statements (from Refs. 6 and 7) is strictly correct. The

contravariant velocity comp ments are neither the physical components of a velocity vector

nor in directions normal tc constant _,77,_ surfaces, respectively. The objective of this

article is to clarify what are the contravariant velocity components and to further explain

their physical implications.

To avoid confusion, w,_ will start with defining terms based on the algebra of vectors.

The term component of a ,rector will be defined. With the definition of covariant and

contravariant base vector s_rstems for given coordinates, the general mathematical term

"contravariant component" will be discussed and its counter term "covariant component"

will also be explained. For simplicity and clarity, we will use several 2-D linear cases as

examples. Here in the 2-D examples, the (z 1, z 2) coordinates are interchangeable with

(_, U) coordinates.

II. Algebra of Vectors

In an n-dimensional _ector space a set of n linearly independent vectors el, e2,- -

-, en is called a base vector _ystem. Any vector A in the space can be expressed as a unique

combination of the base vectors A = c_el + c2e2 + - - - +cne=, or using the summation

convention, A = ciei. The _ectors clel, c2e2, - - -, Crzen are component vectors of vector

A in the el, e2,- - -, and e_ directions, respectively. The coefficients, cl, c2, - - -, and

c_, are called components of vector A in the el, e2, - - -, and e_ directions, respectively,

with respect to the base (e:, e2,- - -, e=).

For example, in Cartesian coordinates, a vector A = 5i + 7j implies

el=i, e2 =j, cl = 5, c2 = 7.

Expressing the same recto': in terms of the base vector ((i - j)/2, j) so as A = 10(i -



j)/2 + 12j, then

el = (i -j)/2, e2 = j, cl = 10, c2 = 12, (3)

or in terms of the basevectors (2i, i+j) as A = - (2i) + 7 (i +j), then

el =2i, e2=i+j, cl =-1, c2=7. (4)

As illustrated above, the ii_variant vector A can be expressed in different base vector

systems which may or may not be orthogonal and normalized. While the "component

vectors" are physical vectors the magnitude of the components of a vector not only depend

on the directions but also d,_,pend on the magnitude (and the dimension, discussed later)

of the base vector system. Obviously, without the prescription of "base vectors", the

"components" of a vector h_ve no meaning.

III. C mtravariant and Covariant Base Vectors

Let x i be the coordinates of a point and r be a position vector. As shown in Fig. 1,

Or
a covariant base vector, gi -- 0x-r, is tangent to its corresponding coordinate line, x _,

and a contravariant base w.ctor, gi = _Tzi, is normal to the other coordinate lines x j

(or the surface of x i = constant), j ¢ i. For any given coordinates x _, its contravariant

and covariant base vectors, ,i and gi are uniquely determined. They have the reciprocal

relation,

{Oif i#jg_.gj =Sj = 1if i=j

where 5} is the Kronecker d,lta. Based on the reciprocal relation, Eq. (5), we have

(5)

Ig [ =
I cos gi)'

(no summation in, i).

1 and gi and gi are in the same direction. NoteIf they are orthogonal, ther [ gi l=

that, the sketches in Fig. 1 land Fig. 2) only give a general indication of the directions of

gi and gi and do not imply any thing about their magnitudes.
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Indeed, wehave dr = g{dx i and the differential of arc length ds is determined from

ds _ = dr-dr; therefore

ds2 = g_ . gj dxidx j = gij dxidxJ

Here, the entity of gij thus defined is called the metric tensor, because of its being the

metric of the space of the c, )ordinates. Similarly, We can define gij = gi . gj. Obviously,

gij is conjugate or reciprocal tensor of 9ij, i.e.

ik i
9 gkj _ 5j

gi . gj = 9_kg k . gj = g gkj

The individual g{k and gkj ;_re the components of two fundamental tensors. Let g : ]gij[

and G = IggJlbe determin_nts of g_j and gij then v_ = 1/vf-d where v_ is the Jaco-

bian of coordinate transforr:_ation from old to new and v_ is the Jacobian of coordinate

transformation from new to old. Details of these relations can be found in regular "Tensor.

Analysis" books, such as R(fs. 8 and 9.

IV. Contraxariant and Covariant Components of a Vector

A given vector A is an invariant, and can be expressed in contravariant and covariant

base vector systems as

A =: Algl + A2g2 + A393

= Alg 1 + A2g 2 + A3g 3

or, in the summation conve_ltion,

A = A_gi = Aig i.

_n_ _ _ +. g,_

_ _ _ +A.,g _

(6)

Here a super-script index i_ used for "contravariant" and a subscript index is used for

4 -"covariant". According to he definitions in Sect. II, Alg_,A2g2,- - -,. g,_ are com-

ponent vectors of vector A in the directions of g_,g2,- - -,g_, respectively. Simi-

larly, Algl,A2g 2, - - -.. A_g _ are component vectors of vector A in the directions of

i



gl g2-_ _ g_ respectively. As defined in the previous Section, gi and gi are two

uniquely defined base vector systems fora given coordinate system x_. (The terms covar#

ant and contravariant willbe explanded below.) Hence, we define

A i as contravariant components of vector A in the directionsof g_, with respect to

the covariant base vector system (gl,g2,- - -, g_).

Ai as covariant comp(ments of vector A in the directionsof gi with respect to the

contravariant base ve(t,or system (gl g2_ _ -, gn).

For simplicity,we callA i c:)ntravariantcomponents of vector A and Ai covariant com-

ponents of vector A, with tmir associationwith covariant and contravariant base vectors

(respectively)implicitlyimplied. The reasons why A _ are calledcontravariant and -4ico-

variant components of a vector are rooted in fundamentals of tensor theory (Refs.8 and

9). The essentialproperty ._fa "vector" (or in general a tensor) is that its components

followthe law of coordinat_ transformation. Setting the base vectors g_ as the standard

of comparison, ifin a coordinate transformation, the components are transformed by the

same matrix that described the transformation of the base vectors g_ ,the components are

called"covariant" and ifthe components are transformed by the inversetransposed matrix

of the the matrix that described the transformation of the base vectors g_, the components

are called "contravariant'. 'The proof of that components Ai are "covariant" and A _ are

"contravariant" isbeyond tilescope of thisarticle.)

One can show that, frgm Eqs. (5) and (6),

A _=A.giand A_=A'g_ (7)

Contravariant and covarian_ components, A _, A_ are related to each other

A i=gij Aj, and Ai =9ij AJ

To obtain :'physical compon rots" of vector A, one has to decompose the vector with respect

to the normalized base vect _r, so as

A ::

6

(summation on i).



Thus the physical eomponeI ts z_i along gi direction and Ai abng g{ direction are

._i =l g_l A_ =- _ gi == _,_,_A, andA_ =1 I& _&, (no sum oni). (8)

Here, the super-script inde:: in component ._i and subscript index in Ai do not imply

"contravariant" and "covarimt" as adopted in the article. They don't follow the law of

coordinate transformation, t,ence they are not components of tensors.

Eq. (7) is useful for e',aluation but commonly leads to a mis-interpretation ( as in

Ref. 7) that A i is the component of vector A in the direction of gi and Ai the components

of vector A in the directior of g_. This mis-interpretation stems from the common use

of a dot-product with a un!t vector, so-called "projection", to calculate the component

of a vector in the direction 3f that unit vector. In projection, it implies that a vector is

decomposed into two component vectors; one parallel to and another perpendicular to a
^.

given direction. (This is dif'erent from the physical components mentioned above, as A'

calculated in Eq. (8).) In Ec. (7), neither the contravariant base vectors nor the covariant

base vectors are normalized, so that Eq. (7) is not a process of projection.

V. 2-D Examples and Continuity Equation

Now in 2-D, let a pos tion vector r(_, r]) with coordinate system ((, 77), then the

detailed formula, with relati ms to the Cartesian quantities, are

A = _ i + vj = Algl + A2g2 = Alg 1 + A2g 2,

A 1 = (A. _1) = _u + _yv,

A1 = (A- gl) = x_u+ y_v,

gl=,7_=_xi+_yj, g2=Vr/=r]_i+r]yj

,)r Or
- - = -- =z_i+yvj

gl _)_ x_ i+y_j, g2 Or]

= x_y v - y_x n

A 2 = (A - g2) = rl_u + r]yv

A2 = (A. g2) = x,_u + y_v

Here A 1 is the contravariant component of A in the direction of _ and A 2 is the con-

travariant component of A n the direction of r], with respect to the base vector system



(__ OrK_)" A1 is the covariant component of A in the direction of V( and A2 is the covariant

component of A in the dire(tion of Vr/, with respect to the base vector system (V(, Vr/).

The relations of contr Lvariant and covariant components to physical quantities can

be illustrated in 2-D as Fig. 2. In Fig. 2, the vector A = OC is expressed by physical

component vectors O___BB= ,A" gl)gl = A 1 gl and OD = (A-g2)g2 = A 2 g2 in the

directions tangent to correst; onding coordinate lines, (gm, g2), or component vectors OE =

(A. gl)g 1 = A_ gl and OF = (A. g2)g 2 = A2 g2 in directions normal to the other

coordinate lines, (gl g2), r(spectively. (Here, a segment with underline, such as OB, is a

vector and without underlin,_, such as OB, is a scalar.) In Fig. 2, OBCD is a parallelogram

formed by B___CIIg2 and CL' II g_, and OECF is a parallelogram formed by E C_CIt g2 and

CF fl g_. Thus the physical components are, with respect to system (gl, g2),

0t3=[g_ I A 1, OD=]g21A 2,

and, with respect to system (gl g2),

OE =1 g_ ]&, OF =1 g2 I A2.

It is interesting to see the di t'erence of physical component from the projection of vector in

certain direction. In contra st to OB and OD as the physical components, the projections

of vector OC in directions cf covariant base vectors are

are

OM = (A. g_)/lg_l = A1/]gll, ON = (A. g2)/Ig21 = A2/[g21.

Similarly, the project!ons of vector OC in directions of contravariant base vectors

OG= (A-gX)/lgl[ = A:/lgZl, OH= (A gZ)/]g21 = A2/]g2l . (9)

We would like to illustrate the above discussions with several examples, by using the

same vector as in Sect. II, A = 5i + 7j, expressed in various contravariant and covariant

base vectors.



As a first example, cmsider the coordinate system _ = 2z,

orthogonal but stretched, tlms

rl = y which is still

gl = _=i + _vJ = 2i, g2 = r]xi -6 rlyj = j

gl =z_ i+y_j=l/2i, g2=zni+y_J=J

Therefore, the contravarian_ components for the vector A are

A 1 =A.gm=10, A 2=A-g2=7

and the covariant componm.ts are

At = A "gl = 5/2, A2 = A • g2 = 7.

Fig. 3 shows the sketch of tt is example, with magnitude and direction. Note that the new

coordinates (_, r/) are same as the (z, y) Cartesian coordinates, except _ is scaled as 2z.

While g2 and g2 are identic_l with in both magnitude and direction, gm and gl are in the

same direction as x-coordin,t,e, i, but different in magnitude, and the magnitudes of A 1

and A1 are scaled accordingly. The shaded area in Fig. 3 (also in Figs. 4a and 5) indicates

as the value of v_, Jacobiar of transformation from old to new coordinates.

As a second example, consider the coordinate lines (4, r/) defined by _ = 2z, 77= z+y,

SO as

r(_, 77) = {/2i + (77- {/2)j

gl =2i, g2= (i+j)

g, = (i - 3)/2, g2 = J

Therefore, the contravariant components for the vector A are

A 1 = 10, A 2 = 12

9



and the covariant componer ts are

Az---1, A2--7.

These are identicalas Eqs. 3) and (4)in Sect. I,written as

A = A]gl + A2g2 = 10(i - j)/2 + 12j

A = Alg 1 + A2g 2 = -(2i) + 7(i+j)

Fig. 4 shows detailed sketc:les of the base vectors, with magnitude and direction, and

relations with (z, y). Fig. 5 shows the vector A expressed in its contravariant and covariant

base vector systems. Since t le magnitudes of base vectors are not normalized, the marked

number are scaled to each b_se vectors accordingly.

It is interesting to not _ that if vector A is decomposed into two component vectors

so that one is parallel to gl ;rod another is normal to gl, then A = 5/v_ _+(i-J) 7/2 (i+J)v_.

These are the projection of x ector A on to unit vectors (i-j)/v_ and (i ÷j)/v/2 , and are

quite different from the expression in contravariant or covariant base vector system.

As a third example, le_ a new coordinate system be ( = (x - y)/2_ _ = _/, and hence

r((, U) = (2_ + u)i + T/j. Therefore, the contravariant and covariant base vectors are

gl = (i-j)/2, g2 =j

gl=2i, g2= (i+j)

Hence, again as Eqs. (3) and (4),

A = Alg 1 + A2g 2 = 10(i-j)/2 + 12j

A = A_gl + A2g2 = -(2i) + 7(i +j)

Fig. 6 shows the contravaria_,t and covariant base vectors for this new coordinate system.

Note that the coordinate system in Fig. 6 is the conjugate or reciprocal of the the coor-

dinate system in Fig. 4. The contravariant base vectors in the 3rd example are covariant

base vectors in the 2nd exa_aple and the covariant base vectors in the 3rd example are

10



contravariant base vectors in the 2nd example. Clearly, the vector A is an invariant and

the specification of coordin_te systemis essentialfor vector decomposition.

In fluid dynamics, the continuity equation can bewritten in integral and differential

forms as

O-t p dv + pW • ntis = O,

a . ._ 0 a g_ (lo)
-_p(g)- + _pW. (9)_g _ + _pw. (9)_ = o,

o a .._ o
a-_._(g)_ + -_p(g)-g + -_p(g)}v = o.

Here, p is density, W = ui + vj the velocity vector and the contravariant velocity com-

ponents, U = W • gl and / = W • g2 are contravariant components of velocity vector

W, in the directions of coxariant base vectors gl and g2, respectively. Here v/g is the

same as j-1 in Eq. (1), the Jacobian of transformation from old to new coordinates (or

v_ -1 = _ = J). In a fi]dte volume formation, v_ is the volume of the grid cell and

(g)½gl and (g)}g2 are surf¢ce normal in the directions of gl and g2 respectively. The

concept of mass conservation can be interpreted accordingly. While (U, V) are computed

by the dot-product of velocity with gl and gZ respectively, it should now be clear that

they are neither physical c(_rnponents of velocity vector nor in directions normal to the

corresponding surfaces.

It is important to note that the contravariant Velocity components, (U, V), do not

have the physical dimension of W (velocity) itself. In fact, in addition to their magnitudes,

the dimensions of contravari.mt and covariant components are controlled by the dimensions

of the covariant and contra_ ariant base vectors, respectively. In Eq. (5) the contravariant

and covariant base vectors are reciprocal not only in magnitude but also in dimension. This

can be clearly illustrated by writing the continuity equation in cylindrical coordinates as

=: T : d(X 2 "_ y2), ?.] : _ : _afz-ly/2£

gl = gl = cosO i + sinO J, v_ = r,

gz = -r (siT,_O i- cosO j), gZ = -llr (sin(? i- cosO j)

11



U = u cosO + v sinO, V = 1/r(v cosO - u sinO)

a o o
Here, gl and gl are identi:al. Even they are same in the direction, (orthogonal to gl

), g2 and g2 are different in magnitude and dimension. Obviously, in the above, the

dimension of contravariant velocity component U is different from that of contravariant

velocity component V.

VI. Time-d,_pendent Coordinates and Different Variations

Up to this point, we have only dealt with the cases where the coordinate system

independent of time. Actu_dly, Steger (Ref. 1) and Refs. 5 and 6 did include a general

transformation with time as, in 2-D, _ = _(x, y, t), r/= r/(x, y, t), 7- = t and defined

the contravariant velocity c_)mponents as

u = + + =  x(u - x,) +  y(v - y.),

The above relations can be -ewritten as

U = W.g_- w'. gl = lW-w').gl ' V = W. g2 - w'.g2 = (W- w') - g 2 (11)

where w' = O-_TOris the coordir:ate velocity vector. The additional terms are the contravariant

components of the coordinate velocity vector. Indeed, W - w' is the relative velocity

vector. Therefore, the so-called contravariant velocities are the contravariant components

of relative velocities, betwe,m the fluid and the coordinates (or locally, the grid lines).

Obviously, all the previous d:scussions still hold for the time-dependent coordinate system.

Finally, we would like _,o point out that not all the so-called contravariant velocities

are defined in the same forr_ as discussed above. For instance, in Refs. 10 and 11, they

were called as "contravarian_ velocities written without normalization". Refs. 10 and 11

have never clarified what w(uld be the "normalized" contravariant velocities. In Ref. 12

the contravariant velocities _,,ere defined as

gl g2
U=W. V=W.-- (12)

ig_l ' Ig_l
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In Ref. 13 the "physical con;ravariant velocity components" (U, V) were defined as

U=W-Igl[g 1, v=w.lg21g 2 (13)

In Refs. 14 and 15 by includiag the Jacobian of transformation, the contravariant velocities

were defined as

= w. (g) gl v = w. (g) g2 (14)

The three above definitions are quite different from each other. In Eq. (12), (U, V) are

the projections of velocity w_ctor on the directions of gl and g2, respectively, and are the

same as OG and OH in Fig. 2 given by Eq. (9). They are not "components" of the velocity

vector W as pointed out previously. In Eq. (13), (U, V) are the physical components

of velocity vector along the _ and r/ directions, given by Eq. (8), and as OB and OD in

Fig. 2, respectively. The (U V) defined in Eq. (14) are not velocity components either.

In a finite-volume formulati,)n, Eq. (14) represent the velocity dot-product with surface

normals (in the direction of the contravariant base vectors), i.e. the convective flux rate

across the corresponding control surfaces. The dimensions of U and V are still controlled

by the base vectors gl and g2 respectively. This can be seen in the continuity equation,

Eq.(10). Nevertheless, the _bove three variations of (U, V) are no longer components

of a tensor, and so are neittLer contravariant nor covariant components of a vector. We

would rather hold to the ori_inal meaning of "contravariant" and maintain the definition

of contravariant velocities as Eq. (2) or Eq. (11), without any modification.

VII. Concluding Remarks

In this paper we have _eviewed the basics of tensor analysis in an attempt to clarify

some misconception regard c )ntravariant and covariant components of a vector as used in

fluid dynamics. We have in(icated that, for any given coordinate system, there are two

uniquely determined reciprocal covariant and contravariant base vector systems. The con-

travariant components are co nponents of a given vector expressed as a unique combination

of the covariant base vector s3 stem and vie versa, the covariant components are components

of a vector expressed with t]_e contravariant base vector system. A vector is an invari-

ant. It is the components w]_ich are contravariant or covariant, associated with the given

13



coordinate system. And the so-called :"contravariant velocity" or "contravariant velocity

component" is really the co:_travariant component of the velocity vector. As described in

Section of Algebra of Vectos, expressing a vector with a combination of base vector is a

decomposition process for a specific base vector system. Hence, the contravariant velocity

components are decompose( components of velocity vector along the directions of coordi-

nate lines, with respect to the covariant base vector system. However, the contravariant

(and eovariant) components are not physical quantities. Their magnitudes and dimensions

are controlled by their corresponding covariant (and contravariant) base vectors.

For a time-dependent coordinate system, the so-called contravariant velocity com-

ponents are the contravaria:_t components of the velocity vector minus the contravariant

components of the coordina:e velocity vector. In other words, the contravariant velocities

can be interpreted as the coILtravariant components of relative velocities, between the fluid

and the coordinates (or loca ly, the grid lines). Obviously, all the discussions hold for both

time-dependent and indepe_ dent coordinate systems.
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Fig. 2 Relations of Physical Components and Projections to

Contravariant and Covariant Components
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